Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic9

Direct product G=N×Q with N=C2 and Q=C22×Dic9
dρLabelID
C23×Dic9288C2^3xDic9288,365


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic9
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic9) = C22×C9⋊C8central extension (φ=1)288C2.1(C2^2xDic9)288,130
C2.2(C22×Dic9) = C2×C4×Dic9central extension (φ=1)288C2.2(C2^2xDic9)288,132
C2.3(C22×Dic9) = C2×C4.Dic9central stem extension (φ=1)144C2.3(C2^2xDic9)288,131
C2.4(C22×Dic9) = C2×C4⋊Dic9central stem extension (φ=1)288C2.4(C2^2xDic9)288,135
C2.5(C22×Dic9) = C23.26D18central stem extension (φ=1)144C2.5(C2^2xDic9)288,136
C2.6(C22×Dic9) = D4×Dic9central stem extension (φ=1)144C2.6(C2^2xDic9)288,144
C2.7(C22×Dic9) = Q8×Dic9central stem extension (φ=1)288C2.7(C2^2xDic9)288,155
C2.8(C22×Dic9) = D4.Dic9central stem extension (φ=1)1444C2.8(C2^2xDic9)288,158
C2.9(C22×Dic9) = C2×C18.D4central stem extension (φ=1)144C2.9(C2^2xDic9)288,162

׿
×
𝔽